Services de reconnaissance d'entité désignée

Human Powered Entity Extraction / Recognition pour former des modèles NLP

Débloquez des informations critiques dans des données non structurées grâce à l'extraction et à la reconnaissance d'entités

Services de reconnaissance d'entité désignée

Clients en vedette

Donner aux équipes les moyens de créer des produits d'IA de pointe.

Amazon
Google
Microsoft
Cogknit
Il existe une demande croissante d'analyse de données non structurées pour découvrir des informations non découvertes.

En regardant la vitesse à laquelle les données sont générées ; dont 80 % ne sont pas structurés, il est nécessaire sur le terrain d'utiliser les technologies de nouvelle génération pour analyser efficacement les données et obtenir des informations utiles pour prendre de meilleures décisions. La reconnaissance d'entités nommées (NER) dans le NLP se concentre principalement sur le traitement de données non structurées et la classification de ces entités nommées dans des catégories prédéfinies.

IDC, cabinet d'analystes :

La base mondiale installée de capacité de stockage atteindra 11.7 zettaoctets in 2023

IBM, Gartner et IDC :

80 % des données dans le monde ne sont pas structurées, ce qui les rend obsolètes et inutilisables. 

Solution du monde réel

Analyser les données pour découvrir des informations significatives pour former des modèles NLP avec NER

Des données correctement organisées et annotées avec précision sont au cœur du fonctionnement des modèles IA/ML. Shaip Named Entity Recognition est conçu pour permettre aux organisations de déverrouiller des informations critiques dans des données non structurées et vous permet de découvrir les relations entre les entités à partir des états financiers, documents d'assurance, avis, notes de médecins, etc. Forts d'une riche expérience dans le traitement du langage naturel et la linguistique, nous sommes bien équipés pour fournir des informations spécifiques à un domaine et gérer des projets d'annotation de toute envergure. 

Reconnaissance d'entité nommée (Ner)

Approches NER

L'objectif principal d'un modèle NER est d'étiqueter ou de baliser des entités dans des documents texte et de les catégoriser pour un apprentissage en profondeur. Les trois approches suivantes sont généralement utilisées à cette fin. Cependant, vous pouvez également choisir de combiner une ou plusieurs méthodes. Les différentes approches pour créer des systèmes NER sont :

Basé sur un dictionnaire
les systèmes

Systèmes basés sur un dictionnaire
C'est peut-être l'approche NER la plus simple et la plus fondamentale. Il utilisera un dictionnaire avec de nombreux mots, des synonymes et une collection de vocabulaire. Le système vérifiera si une entité particulière présente dans le texte est également disponible dans le vocabulaire. En utilisant un algorithme de mise en correspondance de chaînes, une vérification croisée des entités est effectuée. JIl est nécessaire d'améliorer constamment l'ensemble de données de vocabulaire pour le fonctionnement efficace du modèle NER.

Basé sur des règles
les systèmes

Systèmes basés sur des règles
Extraction d'informations basée sur un ensemble de règles prédéfinies, qui sont

Règles basées sur des modèles – Comme son nom l'indique, une règle basée sur un modèle suit un modèle morphologique ou une chaîne de mots utilisée dans le document.

Règles basées sur le contexte – Les règles contextuelles dépendent de la signification ou du contexte du mot dans le document.

Systèmes basés sur l'apprentissage automatique

Systèmes basés sur l'apprentissage automatique
Dans les systèmes basés sur l'apprentissage automatique, la modélisation statistique est utilisée pour détecter les entités. Une représentation basée sur les caractéristiques du document texte est utilisée dans cette approche. Vous pouvez surmonter plusieurs inconvénients des deux premières approches puisque le modèle peut reconnaître les types d'entités malgré de légères variations dans leur orthographe pour l'apprentissage en profondeur.

Comment nous pouvons vous aider

  • TNS général
  • TNS médical
  • Annotation d'informations personnelles
  • Annotation PHI
  • Annotation des phrases clés
  • Annotation des incidents

Applications du NER

  • Assistance client simplifiée
  • Des ressources humaines efficaces
  • Classification simplifiée du contenu
  • Améliorer les soins aux patients
  • Optimisation des moteurs de recherche
  • Recommandation de contenu précise

Cas d'usage

  • Systèmes d'extraction et de reconnaissance d'informations
  • Systèmes de questions-réponses
  • Systèmes de traduction automatique
  • Systèmes de synthèse automatique
  • Annotation sémantique

Processus d'annotation NER

Le processus d'annotation NER diffère généralement de l'exigence d'un client, mais il implique principalement :

Domaine d'expertise

Phase 1: Expertise technique du domaine (compréhension de la portée du projet et des directives d'annotation)

Ressources de formation

Phase 2: Former les ressources adaptées au projet

Documents d'assurance qualité

Phase 3: Cycle de feedback et QA des documents annotés

Notre expertise

1. Reconnaissance d'entité nommée (NER) 

La reconnaissance d'entités nommées dans l'apprentissage automatique fait partie du traitement du langage naturel. L'objectif principal de NER est de traiter des données structurées et non structurées et de classer ces entités nommées dans des catégories prédéfinies. Certaines catégories courantes incluent le nom, le lieu, l'entreprise, l'heure, les valeurs monétaires, les événements, etc.

1.1 Domaine général

Identification des personnes, du lieu, de l'organisation etc. dans le domaine général

Domaine de l'assurance

1.2 Domaine de l'assurance 

Cela implique l'extraction d'entités dans les documents d'assurance tels que 

  • Sommes assurées
  • Limites d'indemnisation/limites de la police
  • Estimations telles que la masse salariale, le chiffre d'affaires, les revenus de commissions, les exportations/importations
  • Horaires des véhicules
  • Extensions de politique et limites intérieures 

1.3 Domaine clinique / NER médical

Identification du problème, de la structure anatomique, de la médecine, de la procédure à partir des dossiers médicaux tels que les DSE ; sont généralement de nature non structurée et nécessitent un traitement supplémentaire pour extraire des informations structurées. Ceci est souvent complexe et nécessite des experts du domaine de la santé pour extraire les entités pertinentes.

Annotation des phrases clés

2. Annotation de phrase clé (KP)

Il identifie un groupe nominal discret dans un texte. Une phrase nominale peut être soit simple (par exemple, un mot principal comme un nom, un nom propre ou un pronom) soit complexe (par exemple, une phrase nominale qui a un mot principal avec ses modificateurs associés)

3. Annotation PII

PII fait référence aux informations personnellement identifiables. Cette tâche implique l'annotation de tous les identificateurs clés qui peuvent se rapporter à l'identité d'une personne.

Annotation pii
Annotation Phi

4. Annotation PHI

PHI fait référence aux informations de santé protégées. Cette tâche implique l'annotation de 18 identificateurs clés de patients tels qu'identifiés en vertu de la loi HIPAA, afin d'anonymiser un dossier/une identité de patient.

5. Annotation des incidents

Identification d'informations telles que qui, quoi, quand, où à propos d'un événement, par exemple attaque, enlèvement, investissement, etc. Ce processus d'annotation comporte les étapes suivantes :

Identification d'entité

5.1. Identification de l'entité (par exemple, personne, lieu, organisation, etc.)

Identification du mot désignant l'incident principal

5.2. Identification du mot désignant l'incident principal (c'est-à-dire mot déclencheur)

Identification de la relation entre un déclencheur et une entité

5.3. Identification de la relation entre un déclencheur et les types d'entités

Raisons de choisir Shaip comme partenaire de confiance pour l'ensemble de données de formation NER

Personnes

Personnes

Des équipes dédiées et formées:

  • Plus de 30,000 collaborateurs pour la création de données, l'étiquetage et le contrôle qualité
  • Équipe de gestion de projet accréditée
  • Équipe de développement de produits expérimentée
  • Équipe d'approvisionnement et d'intégration du pool de talents
Processus

Processus

Une efficacité de processus maximale est assurée avec:

  • Processus robuste 6 Sigma Stage-Gate
  • Une équipe dédiée de ceintures noires 6 Sigma – Responsables des processus clés & Conformité qualité
  • Amélioration continue et boucle de rétroaction
Plateforme

Plateforme

La plateforme brevetée offre des avantages :

  • Plateforme Web de bout en bout
  • Une qualité irréprochable
  • TAT plus rapide
  • Livraison transparente

Pourquoi Shaip ?

Équipe dédiée

On estime que les data scientists passent plus de 80% de leur temps dans la préparation des données. Avec l'externalisation, votre équipe peut se concentrer sur le développement d'algorithmes robustes, nous laissant la partie fastidieuse de la collecte des ensembles de données de reconnaissance d'entités nommées.

Évolutivité

Un modèle ML moyen nécessiterait la collecte et le balisage de gros morceaux d'ensembles de données nommés, ce qui oblige les entreprises à extraire des ressources d'autres équipes. Avec des partenaires comme nous, nous proposons des experts de domaine qui peuvent être facilement adaptés à la croissance de votre entreprise.

Meilleure qualité

Des experts de domaine dédiés, qui annotent jour après jour, feront - n'importe quel jour - un travail supérieur par rapport à une équipe, qui doit s'adapter aux tâches d'annotation dans leurs horaires chargés. Inutile de dire qu'il en résulte un meilleur rendement.

L'excellence opérationnelle

Notre processus éprouvé d'assurance qualité des données, nos validations technologiques et nos multiples étapes d'assurance qualité nous aident à fournir la meilleure qualité qui dépasse souvent les attentes.

Sécurité avec confidentialité

Nous sommes certifiés pour maintenir les normes les plus élevées de sécurité des données avec confidentialité tout en travaillant avec nos clients pour assurer la confidentialité

Des prix compétitifs

En tant qu'experts dans la conservation, la formation et la gestion d'équipes de travailleurs qualifiés, nous pouvons nous assurer que les projets sont livrés dans les limites du budget.

Disponibilité et livraison

Disponibilité élevée du réseau et livraison ponctuelle des données, services et solutions.

Effectif mondial

Avec un pool de ressources onshore et offshore, nous pouvons constituer et dimensionner des équipes selon les besoins pour divers cas d'utilisation.

Personnes, processus et plate-forme

Avec la combinaison d'une main-d'œuvre mondiale, d'une plate-forme robuste et de processus opérationnels conçus par des ceintures noires 6 sigma, Shaip aide à lancer les initiatives d'IA les plus difficiles.

Contactez-nous

Vous souhaitez créer vos propres données d'entraînement NER ?

Contactez-nous maintenant pour savoir comment nous pouvons collecter un ensemble de données NER personnalisé pour votre solution AI/ML unique

  • En m'inscrivant, je suis d'accord avec Shaip Politique de confidentialité and Conditions de service et donner mon consentement pour recevoir des communications marketing B2B de Shaip.

La reconnaissance d'entité nommée fait partie du traitement du langage naturel. L'objectif principal de NER est de traiter des données structurées et non structurées et de classer ces entités nommées dans des catégories prédéfinies. Certaines catégories courantes incluent le nom, le lieu, l'entreprise, l'heure, les valeurs monétaires, les événements, etc.

En quelques mots, NER s'occupe de :

Reconnaissance/détection d'entités nommées – Identification d'un mot ou d'une série de mots dans un document.

Classification des entités nommées – Classement de chaque entité détectée dans des catégories prédéfinies.

Le traitement du langage naturel aide à développer des machines intelligentes capables d'extraire le sens de la parole et du texte. L'apprentissage automatique aide ces systèmes intelligents à poursuivre leur apprentissage en s'entraînant sur de grandes quantités d'ensembles de données en langage naturel. Généralement, la PNL se compose de trois grandes catégories :

Comprendre la structure et les règles du langage – Syntaxe

Déduire le sens des mots, du texte et de la parole et identifier leurs relations - Sémantique

Identifier et reconnaître des mots prononcés et les transformer en texte – Discours

Certains des exemples courants d'une catégorisation d'entité prédéterminée sont :

Personne: Michael Jackson, Oprah Winfrey, Barack Obama, Susan Sarandon

Emplacement: Canada, Honolulu, Bangkok, Brésil, Cambridge

Organisation: Samsung, Disney, Université de Yale, Google

Heure : 15.35h12, XNUMXh,

Les différentes approches pour créer des systèmes NER sont :

Systèmes basés sur un dictionnaire

Systèmes basés sur des règles

Systèmes basés sur l'apprentissage automatique

Assistance client simplifiée

Des ressources humaines efficaces

Classification simplifiée du contenu

Optimisation des moteurs de recherche

Recommandation de contenu précise